If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1081=16t^2
We move all terms to the left:
1081-(16t^2)=0
a = -16; b = 0; c = +1081;
Δ = b2-4ac
Δ = 02-4·(-16)·1081
Δ = 69184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{69184}=\sqrt{64*1081}=\sqrt{64}*\sqrt{1081}=8\sqrt{1081}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{1081}}{2*-16}=\frac{0-8\sqrt{1081}}{-32} =-\frac{8\sqrt{1081}}{-32} =-\frac{\sqrt{1081}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{1081}}{2*-16}=\frac{0+8\sqrt{1081}}{-32} =\frac{8\sqrt{1081}}{-32} =\frac{\sqrt{1081}}{-4} $
| |2x+3|=3x-13 | | n*6-4=6 | | -3/4*x=9/20 | | (x+5)-(3x-7)=10 | | 5b+5=7-b | | 3x−4=3x+5 | | (9b-4)-2(4b+2)=-5 | | y=500(0.05)4 | | 7(x-4)+5=33 | | 6(2x-1)-2=12x-4 | | (-3+8)×4=(3×n)+(8×4) | | (-3+8)×4=(3×n)+(8×4)) | | (-3+8)×4=(3×n)+(8×4= | | 3x÷=15 | | 2x(-3)=16/27 | | -(3n-2)-(2n-7)+3=-6(n-5)-(2n+2)+4 | | 9=3u+2(u+7) | | 3(w-7)+8w=-10 | | 2x+1/2x=60 | | 8x=3x–5 | | (x+69)+2x=90 | | x+(x+12000)=15000 | | 4x-6=2×(2x-3) | | 2(3x-5)=2x+16 | | 7a+10=5a+25 | | 7j=5 | | 8(y-4)=-72 | | -18.7=-1.2+x/7 | | k÷3=6 | | 14=2-6v | | u/7+4=7 | | (3x-3)^2=81 |